A hybrid model to detect phishing-websites
by Mohamed Hafidi; Lamia Mahnane
International Journal of Internet Technology and Secured Transactions (IJITST), Vol. 12, No. 6, 2022

Abstract: Phishing and fraud sites has been widespread on the internet in recent times, in which that it is becoming a source of great concern and a serious cyber security problem, as internet fraudsters target sensitive data and personal information of users, especially the username and password. Numerous approaches has been proposed and used in order to prevent and reduce these phishing websites and attacks, and protect users and their privacy. In this paper, we proposed an anti-phishing system based on machine learning algorithms and classifiers, combined with white-list and black-list techniques. We used the C4.5 classifier that generate a decision tree that provides highly accurate results in deciding whether a site is a fraudulent website or a genuine website based on its URL. Our predictive model achieved a high accuracy rate of 83%. We have modelled our system in the form of a desktop application so that the user can add the URL of the website needed to be checked, and the results appear to the user. The system combination accuracy can exceed 95%, and the execution results prove that.

Online publication date: Wed, 26-Oct-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Internet Technology and Secured Transactions (IJITST):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com