Data-driven artificial bee colony algorithm based on radial basis function neural network Online publication date: Tue, 18-Oct-2022
by Tao Zeng; Hui Wang; Wenjun Wang; Tingyu Ye; Luqi Zhang; Jia Zhao
International Journal of Bio-Inspired Computation (IJBIC), Vol. 20, No. 1, 2022
Abstract: Search strategies play an essential role in artificial bee colony (ABC) algorithm. Different optimisation problems and search stages may need different search strategies. However, it is difficult to choose an appropriate search strategy. To tackle this issue, this paper proposes a data-driven ABC algorithm based on radial basis function neural network (called RBF-ABC). Firstly, a strategy pool with three distinct search strategies is built. The radial basis function (RBF) network is applied to evaluate offspring generated by the search strategies. The search strategy with the best evaluation value is used to guide the search. Dimension perturbation is employed to update multiple dimensions simultaneously, and it improves the convergence speed and the accuracy of the surrogate model. A set of 22 classical benchmark problems with 30 and 100 dimensions are utilised to verify the performance of RBF-ABC. Results show RBF-ABC can effectively save computational evaluations and outperform six other ABC algorithms.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bio-Inspired Computation (IJBIC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com