Analysis of the dynamics of the olfactory evoked EEG responses generated by the brain and e-nose under natural and synthetic odorant stimulations Online publication date: Thu, 28-Jul-2022
by Ramachandran Sunitha; Suma Sri Sravya Chandu; Asundi Sreedevi
International Journal of Computational Science and Engineering (IJCSE), Vol. 25, No. 4, 2022
Abstract: Aroma and taste have a disproportionately strong effect on the human brain in comparison to the other senses, however this effect is mostly unappreciated. The capacity for olfaction to perceive, identify, and distinguish a vast number of chemicals present in the air is the consequence of complicated interactions between receptors, smell molecules, and the brain. The purpose of this article is to investigate and comprehend those complex interactions through the analysis of EEG signals recorded in response to a variety of natural and synthetic odorants administered to the mammalian olfactory system. Additionally, a prototype of a portable electronic nose (E-nose) was built, which consists of a sensor array and an Arduino microcontroller running an implementation of Freeman's KIII olfactory model. The sensor array's output is sent to the microcontroller, which generates EEG signals specific to the odorant stimuli applied. The EEG signal generated by the E-nose is then compared to EEG signals gathered from humans in terms of multiscale entropy and fractal dimension, highlighting the E-nose model's efficiency.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Science and Engineering (IJCSE):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com