Delta robot joints control-based linear MPC controller Online publication date: Thu, 28-Jul-2022
by Wesam M. Jasim
International Journal of Computer Aided Engineering and Technology (IJCAET), Vol. 17, No. 1, 2022
Abstract: Controlling the joints' angles of a robot is an important step which lead to controlling the robot end effector position and/or speed. Thus, it has been a vast area of interest in research which has good investigating potentials using several control types such as classical, modern and optimal control methods. In this work, a linear model predictive control MPC technique was proposed to control the joints' angle of a three degree of freedom delta robot. The inverse kinematics, direct kinematics, and dynamic model of the robot were analysed. Then, the dynamic model represented in a linearised around an operating point state space model. In order to investigate the performance of the proposed MPC controller a simulator-based MATLAB program was implemented. The simulation results have showed the efficiency of the proposed controller in the joints' angles control problem. This illustrates that the MPC controller can derive the joints' angles to track the desired angles with invisible steady state error.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Aided Engineering and Technology (IJCAET):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com