Power control of a stand-alone electric generation hybrid system using integral sliding mode controller Online publication date: Wed, 04-May-2022
by Fatima Ez-zahra Lamzouri; El-Mahjoub Boufounas; Aumeur El Amrani
International Journal of Automation and Control (IJAAC), Vol. 16, No. 3/4, 2022
Abstract: This paper proposes a novel strategy for output power control of an electric generation hybrid system (EGHS), composed of a photovoltaic generation system, a storage battery bank and a variable load. According to different atmospheric conditions and load changes, a robust control based on sliding mode control (SMC) is designed to satisfy the total power demand in different power system operation modes. Thus, the proposed controller is modified by introducing the integral action in the switching surface, in order to improve transient response with minimum steady state error. Numerical simulations are presented and discussed to demonstrate the performance of the proposed method, using a nonlinear model of the plant. Finally, the simulation results show that the proposed integral sliding mode control (ISMC) strategy ensures better response speed and smaller steady-state error compared to standard SMC.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Automation and Control (IJAAC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com