Cat deep system for intrusion detection in software defined networking Online publication date: Thu, 07-Apr-2022
by Yogita Hande; Akkalakshmi Muddana
International Journal of Intelligent Information and Database Systems (IJIIDS), Vol. 15, No. 2, 2022
Abstract: The development of software-defined networks (SDN) is the application of the network control, which is more convenient, secure and easy to develop and manage. This paper proposes an intrusion detection system (IDS) in SDN with the developed cat deep system (CDS). The training is done using the deep convolutional neural network (DCNN) with modified-cat swarm optimisation (M-CSO), which is the integration of the stochastic gradient descent (SGD) with the cat swarm optimisation (CSO). The sniffer, detector, and the sensor are the major components of the proposed system. All the packets are inspected with the sniffer to extract the features and these features are used to detect the abnormality using DCNN and then check the boundary to find the presence of attack in the system. The proposed CDS obtains the maximum accuracy, precision, recall, and F1_measure of 0.9203, 0.9498, 0.9277, and 0.9271, respectively, for NSL-KDD dataset.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Intelligent Information and Database Systems (IJIIDS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com