Effect of tension-stiffening on finite element analysis of glass fibre reinforced polymer-reinforced concrete members
by Md Shah Alam; Amgad Hussein
International Journal of Computer Aided Engineering and Technology (IJCAET), Vol. 16, No. 2, 2022

Abstract: Glass fibre reinforced polymer (GFRP) bars have different mechanical properties than conventional steel reinforcing bars. Concrete members reinforced with these bars behave differently than steel reinforced members. Tension stiffening is the properties of carrying tension in between cracks of reinforced concrete members. This paper presents the results of an investigation into the effect of tension stiffening in nonlinear finite element analysis of concrete beam reinforced with glass fibre reinforced polymer (GFRP) bars. The beam that was investigated was identical to a test beam. The test beam was reinforced in longitudinal direction and there was no shear reinforcement, i.e., shear critical beam. The influence of tension stiffening on different behavioural aspects including load deflection behaviour, ultimate load, and deflection are discussed along with a comparison with the test results of the beam. The analysis was carried out using commercial finite element analysis (FEA) software, ABAQUS. The concrete model was calibrated before using in the analysis. The results revealed that the tension stiffening model has great influence on FEA of GFRP reinforced beam and some of the models are not suitable for FEA of shear critical GFRP reinforced concrete beam.

Online publication date: Fri, 11-Feb-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Aided Engineering and Technology (IJCAET):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com