Transport properties of rare earth doped perovskite material for energy storage devices
by Md Soaib Khan; Sweta Sharma; Rajeev Ranjan
International Journal of Nanoparticles (IJNP), Vol. 13, No. 4, 2021

Abstract: With the growing demand of consumption of energy in everyday life scientific communities need to explore alternative and efficient source for energy conversion and storage. Perovskites, a prominent energy material with chemical formula ABX3 plays significant role as sustainable energy material in storage devices and can potentially replace conventional sources of energy as its oxides are stable. Perovskite materials can be used for making the electrode and electrolytes of solar cells, supercapacitors, biofuels and solid oxide fuel cells due to its stability, ferroelectric, superconducting, catalytic, dielectric and photovoltaic nature. A detailed study of dielectric properties and a.c conductivity of rare earth doped perovskite Pb1-xRx (Zr0.52Ti0.48)1-x/4O3 where R = Eu, Gd, Nd and Sm and x = 0.00, and 0.05 are done in this research article. XRD report shows that it tetragonal structure and crystalline size in of order of nanometre range which is confirmed by SEM report. Tolerance factor approximately equal to 1, dielectric constant in the range of 2,000 to 10,000 and tangent loss was found to be very less for the doped material. From AC conductivity activation energy was calculated which found to be less than 1 eV.

Online publication date: Wed, 26-Jan-2022

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanoparticles (IJNP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email