Noise elimination with partitioning filter for software quality estimation
by Taghi M. Khoshgoftaar, Pierre Rebours
International Journal of Computer Applications in Technology (IJCAT), Vol. 27, No. 4, 2006

Abstract: We present two new noise filtering techniques which improve the quality of training datasets by removing data points that are likely to be noisy. In addition, a new measure called 'efficiency paired comparison' is introduced for simplifying the comparison between two filters. The filtering techniques are based on the partitioning approach – the training dataset is first split into subsets, and base learners are induced on each of these subsets. The predictions are then combined in such a way that an instance in the training data is identified as noisy if it is misclassified by a certain number of base learners. The first technique, multiple partitioning filter combines several classifiers induced on each subset. The second technique, iterative-partitioning filter uses only one base learner but goes through multiple filtering iterations. The amount of noise removed by the techniques is varied by tuning either the filtering level or the number of iterations. Empirical studies using software measurement data from a high assurance software project assess the efficiencies of our two noise filtering approaches. The empirical results suggest that using several base classifiers as well as performing several iterations with a conservative filtering scheme can improve the efficiency of the filtering technique.

Online publication date: Mon, 08-Jan-2007

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Applications in Technology (IJCAT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com