Coronary artery disease diagnosis using extra tree-support vector machine: ET-SVMRBF
by Pooja Rani; Rajneesh Kumar; Anurag Jain
International Journal of Computer Applications in Technology (IJCAT), Vol. 66, No. 2, 2021

Abstract: Coronary Artery Disease (CAD) is a type of cardiovascular disease that can lead to cardiac arrest if not diagnosed timely. Angiography is a standard method adopted to diagnose CAD. This method is an invasive method having certain side effects. So there is a need for non-invasive methods to diagnose CAD using clinical data. In this paper, authors have proposed a methodology ET-SVMRBF (Extra Tree SVM-RBF) to diagnose CAD using clinical data. The Z-Alizadeh Sani CAD data set available on University of California (UCI, Irvine), has been used for validating this methodology. The class imbalance problem in this data set has been resolved using Synthetic Minority OverSampling Technique (SMOTE). Relevant features are selected using the Extra Tree feature selection method. Authors have evaluated the performance of different classifiers Extreme Gradient Boosting (XGBoost), K-NN (K-Nearest Neighbour), Support Vector Machine-Linear (SVM-Linear) and Support Vector Machine-Radial Basis Function (SVM-RBF) on the data set. GridSearch optimisation method is used for hyperparameter optimisation. Accuracy of 95.16% is achieved by ET-SVMRBF which is higher than recent existing work in literature.

Online publication date: Mon, 20-Dec-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computer Applications in Technology (IJCAT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email