The prediction of network security situation based on deep learning method Online publication date: Mon, 09-Aug-2021
by Zhixing Lin; Jian Yu; Shunfa Liu
International Journal of Information and Computer Security (IJICS), Vol. 15, No. 4, 2021
Abstract: Network security situational awareness is one of the important issues in the research of network space security technology. In this paper, deep learning technology is applied to analyse and learn network data, generate counter network by classification for sample amplification, use sparse noise reduction autoencoder for feature selection, and then use LSTM for deep learning model of security situation prediction. After the experiment proved that the proposed model based on sparse noise reduction is not balanced since the encoder-LSTM network security situation prediction model can solve various level attacks against a small number, using the model prediction results accurately in predicting regional security situation has the advantage for a longer time. In order to solve the above problems, the network security management becomes passive to active, adapting measures in advance.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Information and Computer Security (IJICS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com