Adaptive online learning for classification under concept drift
by Kanu Goel; Shalini Batra
International Journal of Computational Science and Engineering (IJCSE), Vol. 24, No. 2, 2021

Abstract: In machine learning and predictive analytics, the underlying data distributions tend to change with the course of time known as concept drift. Accurate labelling in case of supervised learning algorithms is essential to build consistent ensemble models. However, several real-world applications suffer from drifting data concepts which leads to deterioration in the performance of prediction systems. To tackle these challenges, we study various concept drift handling approaches which identify major types of drift patterns such as abrupt, gradual, and recurring in drifting data streams. This study also highlights the need for adaptive algorithms and demonstrates comparison of various state-of-the-art drift handling techniques by analysing their classification accuracy on artificially generated drifting data streams and real datasets.

Online publication date: Tue, 18-May-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Science and Engineering (IJCSE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email