The minimum weight clique partition problem and its application to structural variant calling
by Matthew Hayes; Derrick Mullins
International Journal of Computational Biology and Drug Design (IJCBDD), Vol. 13, No. 5/6, 2020

Abstract: The calling of genomic structural variants (SV) in high-throughput sequencing data necessitates prior discovery of abnormally aligned discordant read pair clusters that indicate candidate SVs. Some methods for SV discovery collect these candidate variants by heuristically searching for maximal cliques in an undirected graph, with nodes representing discordant read pairs and edges between vertices indicating that the read pairs overlap. This approach works well for identifying clusters that overlap with noisy mapping artefacts, but could miss distinct variant clusters that are created due to complex structural variants or overlapping breakpoints of distinct SVs. In this paper, we consider the minimum weight clique partition problem and its application to the problem of discordant read pair clustering. Our results demonstrate that methods which approximate or heuristically solve this problem can enhance the predictive abilities of structural variant calling algorithms.

Online publication date: Wed, 31-Mar-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Biology and Drug Design (IJCBDD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com