An innovative artificial intelligence approach for disease classification in plants
by Nitin Vamsi Dantu; Shriram K. Vasudevan; K. Vimalkumar
International Journal of Sustainable Agricultural Management and Informatics (IJSAMI), Vol. 7, No. 1, 2021

Abstract: The farmers are facing a lot of challenges and one of the main problems they face is because of plant diseases. The energy to the disease fungi is taken from the plants which they live on. They are responsible for the huge damage and the damages are classified into wilting, rusts, blotches, scabs, mouldy coatings, and rotted tissue. Most of the farmers are being affected with huge losses as they do not find the right solution for a certain disease that their crops have. The primary goal of this research is to find the common diseases in the plants and suggest the optimal solution that helps in reducing the fault rate of crops and in turn, it increases the crop yield. This would lower the crop damage drastically and the consumers can purchase better quality products. We propose to use deep learning techniques to identify diseases in crops in real-time, the same can be made as a mobile app that could help farmers or anyone to detect the diseases for the plants. The system is found to be functionally very stable and works under all ideal conditions.

Online publication date: Fri, 05-Mar-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Sustainable Agricultural Management and Informatics (IJSAMI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email