Supercritical carbon dioxide turbomachinery development using scaling methodology, computational fluid dynamics and experimental testing in aeroloop
by Vijayaraj Kunniyoor; Punit Singh
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 21, No. 1, 2021

Abstract: Supercritical carbon dioxide (SCO2) turbomachinery design experience is limited. This paper examines similarity-based scaling strategy to develop a radial inflow turbine and a centrifugal compressor from existing proven designs for a 50 kWe SCO2 Brayton cycle. The SCO2 turbine and compressor are developed from well-established NASA 1730 air turbine and NASA 4613 radial pump, respectively. Computational fluid dynamic (CFD) simulations with air and SCO2 and experimental testing in aeroloop are carried out for the developed turbomachinery. The results are compared with original NASA test data. For the turbine, the CFD simulation and experimental results were in good agreement with NASA data. For the compressor, CFD simulation results with SCO2 showed good conformance especially the efficiency values, which were much lower for air. The compressor experimental results were well away from the NASA data when head rise coefficient was considered, but the flow coefficient zone coincided with that of simulation.

Online publication date: Mon, 25-Jan-2021

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email