Model-based electric traction drive resolver fault diagnosis for electrified vehicles
by Tianpei Li; Giorgio Rizzoni; Qadeer Ahmed; Jason Meyer; Mathew Boesch; Bader Badreddine
International Journal of Powertrains (IJPT), Vol. 9, No. 1/2, 2020

Abstract: In electric and hybrid electric vehicles (EVs/HEVs) the electric traction drive plays an important role in producing driving torque. The motor torque request is calculated based on pedal positions from the driver and motor speed measurement from the position and speed sensor, typically the resolver. When there is a fault in the resolver that leads to inaccurate motor speed measurement, the vehicle supervisory controller may request undesired motor torque, which may lead to motor torque oscillations that could result in safety or degradation problems. This paper presents a model-based approach for diagnosing the resolver fault in the electrified vehicles, with focus on two typical types of faults, amplitude imbalance and quadrature imperfection. Before the diagnostic strategy is designed, resolver failure modes and fault propagation are analysed using a high-fidelity hybrid electric vehicle powertrain simulator. The proposed diagnostic strategy is implemented and validated through model-in-the-loop simulation, augmented by experimental data.

Online publication date: Mon, 13-Jul-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Powertrains (IJPT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email