When a pressure transmitter leaves the linearity: the Rosemount Case Online publication date: Sun, 20-Aug-2006
by J. Blazquez
International Journal of Nuclear Energy Science and Technology (IJNEST), Vol. 2, No. 3, 2006
Abstract: When a Rosemount pressure transmitter experiences the inner silicone oil-loss syndrome, it loses its linear behaviour. In such a case, the response time is not unique; as a consequence, focusing the sensor surveillance to the response time, as required by the technical specifications of the nuclear plant, might have no sense. In which way is the sensor dynamic not linear? Answering this open question is the main objective of this work. A bilinear model can explain most of the features of the noise signal. A more elaborated model is built in order to explain the results of the deterministic experiments. The corresponding non-linear differential equation is solved exactly for the step response, and an approximate expression is found for the anomalous response time. When the driving term of the dynamic is not a step, the differential equation is solved approximately using the Picard iteration procedure. It gives some light on why the oscillations lose symmetry or why the amplitude probability of the noise signal shows skewness.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nuclear Energy Science and Technology (IJNEST):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com