Large-scale text classification with deeper and wider convolution neural network
by Min Huang; Wei Huang
International Journal of Simulation and Process Modelling (IJSPM), Vol. 15, No. 1/2, 2020

Abstract: The dominant approaches for most natural language processing (NLP) tasks like text classification are recurrent neural networks (RNNs) and convolutional neural networks (CNNs). These architectures are usually shallow and only have one or two layers, which cannot easily extract inner patterns in natural language. Different from the original feature of image pixels with regularity, words and phrases are highly abstracted from human knowledge without direct correlation. Shallow models only capture the surface relation between them while deep models cannot directly apply them. Therefore, a shuffle convolution neural network (SCNN) is proposed to address the shallow learning problem by introducing wider inception cell and deeper residual connection. In the paper, the difficulty of applying deep models to NLP problems is overcome by tricks of shuffling channel input and reshaping the output dimension in the first layer. The results of the experiments carried out in this research work demonstrate that the proposed SCNN makes a great improvement in accuracy and efficiency compared to shallow models.

Online publication date: Wed, 29-Apr-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Simulation and Process Modelling (IJSPM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com