A deep neural architecture for sentence semantic matching
by Xu Zhang; Wenpeng Lu; Fangfang Li; Ruoyu Zhang; Jinyong Cheng
International Journal of Computational Science and Engineering (IJCSE), Vol. 21, No. 4, 2020

Abstract: Sentence semantic matching (SSM) is a fundamental research task in natural language processing. Most existing SSM methods take the advantage of sentence representation learning to generate a single or multi-granularity semantic representation for sentence matching. However, sentence interactions and loss function which are the two key factors for SSM still have not been fully considered. Accordingly, we propose a deep neural network architecture for SSM task with a sentence interactive matching layer and an optimised loss function. Given two input sentences, our model first encodes them to embeddings with an ordinary long short-term memory (LSTM) encoder. Then, the encoded embeddings are handled by an attention layer to find the key and important words in the sentences. Next, sentence interactions are captured with a matching layer to output a matching vector. Finally, based on the matching vector, a fully connected multi-layer perceptron outputs the similarity score. The model also distinguishes the equivocation training instances with an improved optimised loss function. We also systematically evaluate our model on a public Chinese semantic matching corpus, BQ corpus. The results demonstrate that our model outperforms the state-of-the-art methods, i.e., BiMPM, DIIN.

Online publication date: Fri, 24-Apr-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Science and Engineering (IJCSE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com