Systematic design strategy for DPL-based ternary logic circuit
by Aloke Saha; Narendra Deo Singh
International Journal of Nanoparticles (IJNP), Vol. 12, No. 1/2, 2020

Abstract: This work proposes novel strategy to design 2-input ternary (base-3) logic circuits using double pass-transistor logic (DPL). The concept has been explored with respect to 2-input TXOR gate. The circuit diagram of proposed DPL-based TXOR, TAND and TOR logic gate is presented. The proposed T-Cells are designed and optimised using BSIM3 device model with 1.8 V supply rail and at 25°C temperature on TSMC 0.18 µm CMOS technology. The transient response from T-Spice simulatio is validated and the speed-power performance is recorded. Next, the 2:9 ternary decoder based on proposed idea has been explained. The decoder circuit is also designed with 1.8 V supply rail at 25°C temperature on TSMC 0.18 µm CMOS technology. The trit value '0', '1' and '2' are represented with 0 V, 0.9 V and 1.8 V respectively. As per simulation result the proposed 2:9 ternary decoder dissipates 383.57 µW average power and takes 64.87 ps to generate final output.

Online publication date: Tue, 24-Mar-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanoparticles (IJNP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email