NSGA-III algorithm with maximum ranking strategy for many-objective optimisation
by Fei Xue; Di Wu
International Journal of Bio-Inspired Computation (IJBIC), Vol. 15, No. 1, 2020

Abstract: In recent years, a non-dominated sorting genetic algorithm III (NSGA-III) based on decomposition strategy had been extensively studied. However, there are still problems of lower Pareto selection pressure and insufficient diversity maintenance mechanism. To address these problems, NSGAIII algorithm with maximum ranking strategy (NSGAIII-MR) is proposed. In this algorithm, the convergence and diversity distance are balanced by adaptive parameter settings to achieve better performance. The maximum ranking strategy exploits the perpendicular distance from the solution to the weight vector to increase Pareto selection pressure. Moreover, the diversity of population is maintained with the reference point strategy to guide the solutions closer to the real Pareto front. Comparing with NSGAIII, the NSGAIII-MR algorithm enhances selection pressure and has good convergence and diversity performance. Also, the performance of algorithm is verified by comparing with other state-of-the-art evolutionary algorithms on the benchmark problems and the NSGAIII-MR is competitive.

Online publication date: Mon, 16-Mar-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bio-Inspired Computation (IJBIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com