A review on the artificial neural network approach to analysis and prediction of seismic damage in infrastructure
by Manouchehr Shokri; Kian Tavakoli
International Journal of Hydromechatronics (IJHM), Vol. 2, No. 4, 2019

Abstract: Machine learning has been the focus of attention in recent decades, and the influence of the artificial neural networks (ANN) is notable as the most extensively used models of machine learning in the assessment of infrastructures. This paper presents the state of the art of analysis and prediction of seismic damage in infrastructure. The survey demonstrates that ANNs are the essential tools for predicting damage detection of seismic performances of RC bridges. It was also shown that efficiency stresses of the reinforcements are one of the important sources of uncertainty in fragility analysis of RC bridges. It is evident from this evaluation that ANNs have been successfully applied to many infrastructure engineering areas like prediction, risk analysis, decision-making, resources optimisation, classification, and selection.

Online publication date: Mon, 06-Jan-2020

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Hydromechatronics (IJHM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com