Hidden Markov models for advanced persistent threats
by Guillaume Brogi; Elena Di Bernardino
International Journal of Security and Networks (IJSN), Vol. 14, No. 4, 2019

Abstract: Advanced persistent threats (APT) are a serious security risk and tools suited to their detection are needed. These attack campaigns do leave traces in the system, and it is possible to reconstruct part of the attack campaign from these traces. In this article, we describe a hidden Markov model for the evolution of an APT. The aim of this model is to validate whether the evolution of the partially reconstructed attack campaigns are indeed consistent with the evolution of an APT. Since APTs are hard to detect, we also introduce a score to take into account potentially undetected attacks. In addition, the score also allows comparing the fit of APTs of different lengths. We validate and illustrate both the model and the score using data obtained from experts.

Online publication date: Mon, 21-Oct-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Security and Networks (IJSN):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com