GIS information feature estimation algorithm based on big data Online publication date: Fri, 27-Sep-2019
by Chunyang Lu; Feng Wen
International Journal of Information and Communication Technology (IJICT), Vol. 15, No. 2, 2019
Abstract: In order to improve the data mining and information scheduling capabilities of geo-information system (GIS), it is necessary to optimise GIS information feature estimation and perform GIS information feature extraction, so a GIS information feature estimation algorithm based on big data analysis is proposed. In this algorithm, the piecewise linear estimation method is adopted to reconstruct feature data in the GIS information database in group, and associated information fusion is performed to the GIS data in the database, and adaptive scheduling is performed to the GIS information feature database through the cascaded distributed scheduling method; according to the spatial distribution of geographic information, vector adjustment is performed to the cluster centre, and the frequent item mining method is adopted to extract features of GIS information, and then sequential processing is adopted to the extracted feature quantity of GIS information; the regularised power density spectrum estimation method is adopted to perform unbiased estimation to GIS information feature data. Simulation results show that in GIS information feature estimation, the proposed method can provide estimation with low bias and high accuracy, so it has good GIS information scheduling capability and precision.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Information and Communication Technology (IJICT):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com