Three-dimensional dynamic tracking learning algorithm for pedestrians on indefinite shape base based on deep learning
by Yaomin Hu
International Journal of Information and Communication Technology (IJICT), Vol. 15, No. 2, 2019

Abstract: In order to improve the three-dimensional dynamic tracking and recognition ability to pedestrians, a three-dimensional dynamic tracking learning algorithm for pedestrians on indefinite shape base based on deep learning is proposed in this paper. First, the indefinite shape base mesh of body imaging is segmented to extract three-dimensional dynamic similarity features of pedestrians, and the three-dimensional feature points are marked; the deep learning method is adopted for fusion of gray pixel value and extraction of difference feature to images during three-dimensional dynamic tracking. Then a motion vector library is constructed based on the extraction results, and the template matching equation of three-dimensional dynamic feature points of pedestrians is obtained. The simulation results show that this method can accurately track moving bodies in three-dimensional dynamic tracking and recognition and can provide good robustness in moving body target extraction with accuracy up to 100% at maximum and detection time of 48.83ms at maximum.

Online publication date: Fri, 27-Sep-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Information and Communication Technology (IJICT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com