On the use of non-Gaussian models for statistical description of road micro-surface profiles
by Alexander Steinwolf; Matthias Wangenheim; Joerg Wallaschek
International Journal of Vehicle Systems Modelling and Testing (IJVSMT), Vol. 13, No. 3, 2019

Abstract: When analysing vehicle-road interaction, probability density function (PDF) of random micro-surface is required. Since the asperity tops are polished by tyres stronger than the valley bottoms, the surface height profiles become asymmetrical. As a result, the PDFs of micro-surface signals are often different from the Gaussian model and one needs a non-Gaussian PDF model operating with skewness and kurtosis. Previous solutions by the Pearson and Johnson distributions do not lend themselves for further implementation in analytical form. To overcome this difficulty, a non-Gaussian PDF can be constructed from a few Gaussian sections with different mean values and standard deviations. To use such a piecewise-Gaussian model for analytical derivations, it is simply necessary to apply the classic Gaussian equation several times. An example of skewed PDF of micro-surface of an asphaltic concrete highway measured by a laser scanning system was adequately approximated by the tetra-Gaussian model consisting of four Gaussian sections.

Online publication date: Mon, 12-Aug-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Systems Modelling and Testing (IJVSMT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com