A data cleaning method for heterogeneous attribute fusion and record linkage
by Hui-Juan Zhu; Tong-Hai Jiang; Yi Wang; Li Cheng; Bo Ma; Fan Zhao
International Journal of Computational Science and Engineering (IJCSE), Vol. 19, No. 3, 2019

Abstract: In big data era, massive heterogeneous data are generated from various data sources, the cleaning of dirty data is critical for reliable data analysis. Existing rule-based methods are generally developed in single data source environment, issues like data standardisation and duplication detection for different data type attributes, are not fully studied. In order to address these challenges, we introduce a method based on dynamic configurable rules which can integrate data detection, modification and transformation together. Secondly, we propose a type-based blocking and a varying window size selection mechanism based on classic sorted-neighbourhood algorithm. We present a reference implementation of our method in a real-life data fusion system and validate its effectiveness and efficiency using recall and precision metrics. Experimental results indicate that our method is suitable in the scenario of multiple data sources with heterogeneous attribute properties.

Online publication date: Mon, 05-Aug-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computational Science and Engineering (IJCSE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com