Analytical modelling and experimental study of machining of smart materials using submerged abrasive waterjet micromachining process Online publication date: Mon, 22-Jul-2019
by Anurag Mahajan; Sagil James
International Journal of Manufacturing Research (IJMR), Vol. 14, No. 3, 2019
Abstract: Smart materials are new generation materials which possess great properties to mend themselves with a change in environment. Manufacturing of these materials is a huge challenge, particularly at micron scale due to their superior mechanical properties such as high hardness, high compressive strength and chemical inertness. This research investigates submerged abrasive waterjet micromachining (SAWJMM) process for machining smart ceramic materials. The research also involves experimental study on micromachining of smart materials using an in-house fabricated SAWJMM setup. The study found that SAWJMM process is capable of successfully machining smart materials including shape memory alloys and piezoelectric materials at the micron scale. An analytical predictive model is developed to estimate the MRR during SAWJMM process and the model is found to be capable of accurately predicting the machining results within 10% error. [Submitted 14 January 2018; Accepted 26 May 2018]
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Manufacturing Research (IJMR):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com