On the potential of water desalination as a proxy for energy storage systems in nuclear power plants Online publication date: Wed, 17-Jul-2019
by Bassam Khuwaileh; Ahmed Ishag
International Journal of Nuclear Energy Science and Technology (IJNEST), Vol. 13, No. 2, 2019
Abstract: Nuclear energy is a promising source of power, proven viable in the cogeneration of electricity and water alike. However, a major challenge for (but not limited to) nuclear power generation is the maximisation of the power plant efficiency. Operating power plants with high to maximum efficiency has a profound effect on energy prices and environmental conditions for obvious reasons. One proposed strategy is to utilise energy storage systems for later discharge of power. However, this option entails transmission losses and a considerable capital cost. Therefore, this work explores the potential of water desalination as a proxy for energy storage systems in nuclear power plants. The current work explores various water desalination technologies and compares their performance in terms of the economics, water quality and production capacity. Three case studies have been adapted including APR1400, SMART and NuScale technologies. On the desalination side, Reverse Osmosis (RO), Multi-Stage Flash (MSF), Multi-Effect Distillation (MED) and hybrid combinations were studied. Results indicate that various desalination techniques can replace energy storage systems with justifiable capital cost and yet provide fresh water with acceptable quality. Specifically, RO can use the excess power produced via nuclear reactors during low demand periods with relatively low costs, without introducing new radiation release pathways.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nuclear Energy Science and Technology (IJNEST):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com