Managing privacy of sensitive attributes using fuzzy-based data transformation methods in privacy preserving data mining environment Online publication date: Mon, 24-Jun-2019
by V.K. Saxena; Shashank Pushkar
International Journal of Business Information Systems (IJBIS), Vol. 31, No. 2, 2019
Abstract: When we extract personal, sensitive and business information in data mining applications, then certain problems occurs. Privacy attack occurs due to the misuse of individual information. In centralised database environment, data transformation methods in fuzzy-based data in the field of privacy preserving clustering are proposed in this paper. In first case, a fuzzy data transformation method is proposed and different experiments are conducted by changing the fuzzy membership functions such as Z-shaped fuzzy membership function, Triangular fuzzy membership function, Gaussian fuzzy membership function to transform the original dataset. In second case, a hybrid method is proposed as a combination of fuzzy data transformation approach which is specified in first case and random rotation perturbation (RRP). The experimental outcome verified that the hybrid approach permits finest results for every member functions.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Business Information Systems (IJBIS):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com