A novel firefly algorithm for parameter estimation Online publication date: Wed, 05-Jun-2019
by Gan Yu
International Journal of Wireless and Mobile Computing (IJWMC), Vol. 16, No. 4, 2019
Abstract: Firefly algorithm (FA) is a recently proposed optimisation technique, which has shown good optimisation performance. However, FA suffers from slow convergence and low accuracy of solutions. To improve this case, this paper presents a novel FA (NFA) by combining two strategies. First, a local search operator is constructed for better fireflies in the population. Second, a concept of opposition-based learning is used for improving the accuracy of the global best solution. The experiment consists of two parts: (1) seven classical benchmark functions are used to verify the optimisation ability of NFA; and (2) NFA is used for parameter estimation of frequency modulated (FM) sound synthesis. Simulation results show the NFA approach can achieve promising performance.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Wireless and Mobile Computing (IJWMC):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com