Optimisation for quay crane scheduling problem under uncertainty using PSO and OCBA
by Hongtao Hu; Xiazhong Chen; Si Zhang
International Journal of Shipping and Transport Logistics (IJSTL), Vol. 11, No. 2/3, 2019

Abstract: This paper addresses the quay crane scheduling problem (QCSP) under uncertain conditions at container terminals. Variations in container volume, arrival time, equipment functionality and weather conditions create significant uncertainties when scheduling loading and unloading tasks. In order to maintain the service level of the port under various conditions, port operator urgently need to execute a robust schedule. In this paper, a stochastic programming model is formulated to minimise the makespan of quay crane service, using a particle swarm optimisation (PSO) algorithm integrated with optimal computing budget allocation (OCBA) to improve computational efficiency. Numerical experiments show that the applied algorithm performs well under uncertainty.

Online publication date: Wed, 24-Apr-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Shipping and Transport Logistics (IJSTL):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com