Comparison of cuckoo search and particle swarm optimisation in triclustering temporal gene expression data
by P. Swathypriyadharsini; K. Premalatha
International Journal of Swarm Intelligence (IJSI), Vol. 4, No. 1, 2019

Abstract: The nature inspired meta-heuristic algorithms have ubiquitous nature in nearly every aspect, where computational intelligence is applied. This paper focuses on the comparative study of two commonly used robust bio inspired optimisation algorithms namely cuckoo search and particle swarm optimisation for triclustering the microarray gene expression data. Triclustering broadens the clustering technique by extracting the subset of genes that are highly co-expressed over a subset of conditions and across a subset of time points. Both the algorithms are applied to three real life three dimensional datasets. The performances of the algorithms are compared using the mean square residue as a fitness function and it is also compared with other triclustering algorithms. The experiment results prove that cuckoo search algorithm has better computational efficiency than particle swarm optimisation algorithm.

Online publication date: Fri, 18-Jan-2019

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Swarm Intelligence (IJSI):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com