PACC: a directive-based programming framework for out-of-core stencil computation on accelerators
by Nobuhiro Miki; Fumihiko Ino; Kenichi Hagihara
International Journal of High Performance Computing and Networking (IJHPCN), Vol. 13, No. 1, 2019

Abstract: We present a directive-based programming framework, i.e., the pipelined accelerator (PACC), to accelerate large-scale stencil computation on an accelerator device, such as a graphics processing unit (GPU). PACC provides a collection of extended OpenACC directives to facilitate out-of-core stencil computation accelerated using temporal blocking. The proposed framework includes a source-to-source translator capable of generating an out-of-core OpenACC code from the PACC code, i.e., large data is automatically decomposed into smaller chunks that are processed using limited capacity device memory. The generated code is optimised using a temporal blocking technique to minimise CPU-GPU data transfer. Furthermore, the code is accelerated using a multithreaded pipeline engine that maximises data copy throughput and overlaps GPU execution and data transfer. In experiments, we applied the proposed translator to three stencil computation codes. The out-of-core performance for 107 GB data on an NVIDIA Tesla K40 GPU with 12 GB memory reached 69.3 GFLOPS, which is 17% less than the in-core performance for 8 GB data. We believe that the proposed directive-based approach can be used to facilitate out-of-core stencil computation on a GPU.

Online publication date: Tue, 11-Dec-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of High Performance Computing and Networking (IJHPCN):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email