A numerical study of Rayleigh-Taylor instability for various Atwood numbers using ISPH method
by Amin Rahmat; Nima Tofighi; Mehmet Yildiz
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 18, No. 5, 2018

Abstract: In this paper, the wall bounded single-mode Rayleigh-Taylor instability (RTI) for a two-phase immiscible fluid system in a confined domain is investigated numerically for various Atwood numbers ranging from At = 0.2 to At = 0.8. Governing equations are discretised using the smoothed particle hydrodynamics (SPH) method. A robust numerical scheme is used to simulate the RTI phenomenon and in order to model the fluid-flow in the vicinity of the interface, transport parameters such as density and viscosity are smoothed using colour function. The surface tension force is coupled to the momentum equation using continuum surface force (CSF) model. It is shown that in general the RTI evolves in three distinct stages, namely linear stability, mushroom-head formation and long-term evolution. The growth rate in the first stage, i.e. the linear instability, shows good agreement with the analytical solution in the literature. The qualitative and quantitative results of second and third stages are introduced and relevant discussions are made.

Online publication date: Mon, 10-Sep-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com