Mining frequent itemsets over uncertain data streams
by Huiting Liu; Kaishen Zhou; Peng Zhao; Sheng Yao
International Journal of High Performance Computing and Networking (IJHPCN), Vol. 11, No. 4, 2018

Abstract: In recent years, due to the wide applications of sensor network monitoring, RFID, moving object search and LBS, mining frequent itemsets over uncertain data streams has attracted much attention. However, existing hyper-structure-based algorithms cannot achieve high mining accuracy. In this paper, we present two sliding-window-based false-positive-oriented algorithms, called uncertain data stream frequent itemsets mining (UFIM) and UFIMTopK, to find threshold-based and rank-based frequent itemsets from uncertain data streams efficiently. UFIM uses a global GT-tree to maintain frequent itemsets in the sliding window and outputs them when needed. In addition, efficient deleting strategy is designed to reduce time overhead. UFIMTopK is designed to find top-k frequent itemsets, and it is modified from UFIM. Experimental results show that our proposed algorithm UFIM can obtain higher mining accuracy than previous algorithms on synthetic and real-life datasets.

Online publication date: Tue, 24-Jul-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of High Performance Computing and Networking (IJHPCN):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email