A fuzzy surrogate modelling approach for real-time predictions in mechanised tunnelling
by Ba Trung Cao; Steffen Freitag; Günther Meschke
International Journal of Reliability and Safety (IJRS), Vol. 12, No. 1/2, 2018

Abstract: In mechanised tunnelling, it is important to perform reliability analyses with respect to the tunnel face collapse and the damage risks of the tunnel lining and existing structures on the ground surface due to the tunnelling induced settlements. The reliability assessment requires to deal with limited information describing the local geology and the soil parameters due to the availability of only a small number of borehole data. In this paper, it is focused on real-time reliability analyses in mechanised tunnelling considering different types of uncertain data, i.e. combining epistemic and aleatoric sources of uncertainty within polymorphic uncertainty models. The system output of interest in these analyses is time variant tunnelling induced surface settlement fields, which are computed by a finite element simulation model. However, for real-time predictions with uncertain data, efficient and reliable surrogate models are required. A new surrogate modelling strategy is developed to predict time variant high dimensional fuzzy settlement fields in real-time. The predicted results of the new surrogate model show similar accuracy compared to the results obtained by optimisation based fuzzy analyses. Meanwhile, the computation time is significantly reduced especially in case of high dimensional outputs and in combination with the p-box approach in the case of polymorphic uncertain data.

Online publication date: Wed, 13-Jun-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Reliability and Safety (IJRS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com