User-based collaborative filtering algorithm fusing the local and global nearest neighbour
by Cheng Wang; Shiqi Wen; Fangfang Su; Yewang Chen; Yiwen Zhang; Guoqi Zheng
International Journal of Internet Manufacturing and Services (IJIMS), Vol. 5, No. 2/3, 2018

Abstract: Collaborative filtering method is one of the most successfully used recommendation algorithm. It can be divided into the global nearest neighbour based method and the local nearest neighbour based method. The global neatest neighbour based method has high stability but the recommended results are not sufficiently personalised. The local nearest neighbour based method is more accurate and personalised than the global neatest neighbour based method, but the prediction failure rate is high and it's not stable. Aiming at these problems, a new user-based collaborative filtering algorithm fusing the local and global nearest neighbour is proposed. Firstly, the max-min K-medoids clustering algorithm is applied for clustering items into several clusters. The local similarity of users is calculated in each item cluster. Secondly, the factor of correlation-weighted is introduced to improve the accuracy of the global similarity among users. Finally, this new similarity among users is presented to optimise the selection of neighbours of target user. This new method increases the recommendation precision while avoiding the shortcoming of instability. The experimental results on EachMovie and MovieLens-100K show that the prediction reliability and accuracy of this new method are better than traditional ones.

Online publication date: Tue, 22-May-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Internet Manufacturing and Services (IJIMS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com