Analysis and design of a crash attenuator for a lightweight racing car
by Simonetta Boria
International Journal of Automotive Composites (IJAUTOC), Vol. 3, No. 2/3/4, 2017

Abstract: In this paper, the crash safety performance of a racing car is evaluated focusing on the optimisation of its frontal impact attenuator from the geometrical and material point of view. After the definition of the CAD model of the full vehicle, it was possible to convert it into finite elements applying properties, materials, contacts, boundary and initial conditions for each body components in order to conduct a dynamic analysis through LS-DYNA code. The full vehicle front impact simulation against a rigid barrier is carried out considering different attenuator structures. With respect to the previous literary works, geometries taken into account are much more complex. Moreover, conventional and CFRP composite materials are used during modelling in order to do a comparison between them in term of safety. The results show that the composite attenuators can be more competitive than conventional absorbers of similar geometry in terms of intrusion and energy absorption.

Online publication date: Mon, 30-Apr-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Automotive Composites (IJAUTOC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email