An experimental study of the particle velocities in abrasive waterjets
by Kunlapat Thongkaew; Jun Wang
International Journal of Abrasive Technology (IJAT), Vol. 8, No. 2, 2017

Abstract: An experimental study using particle image velocimetry (PIV) and laser induced fluorescence (LIF) techniques is presented to examine the particle flow characteristics inside the high velocity abrasive waterjet (AWJ) and assess the capability of this measurement technique. Although the particle velocity is found to increase with an increase in water pressure, the velocity of particles on the jet centreline decreases while that at the jet edge increases as the jet flows downstream within 40 mm distance from the nozzle exit considered in this study. It is also shown that particles rotate while moving downstream from the nozzle exit. While these particle flow characteristics may be anticipated from theoretical understanding, it confirms that the capability of this technique is not only able to measure the particle velocities, but also observe the particle trajectory in high velocity flows. The measured particle velocity data are then used to assess the applicability of a previously developed particle velocity model for low water pressures. It is found that the model can equally give adequate predictions of particles velocities in AWJ for relatively low water pressures of within 20 MPa.

Online publication date: Sun, 14-Jan-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Abrasive Technology (IJAT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email