Investigating the effects of smoothing on the performance of earthquake hazard maps
by Edward M. Brooks; Seth Stein; Bruce D. Spencer
International Journal of Earthquake and Impact Engineering (IJEIE), Vol. 2, No. 2, 2017

Abstract: We explore whether less detailed probabilistic hazard maps might perform better by assessing how smoothing Japan's national earthquake hazard maps affects their fit to a 510-year record of shaking. As measured by the fractional exceedance metric implicit in such probabilistic hazard maps, simple smoothing over progressively larger areas improves the maps' performance such that in the limit a uniform map performs best. However, using the squared misfit between maximum observed shaking and that predicted as a metric, map performance improves up to a ~75-150 km smoothing window, and then decreases with further smoothing. This result suggests that the probabilistic hazard models and the resulting maps may be over-parameterized, in that including too high a level of detail to describe past and future earthquakes may lower the maps' ability to predict future shaking.

Online publication date: Thu, 04-Jan-2018

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Earthquake and Impact Engineering (IJEIE):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com