Computation of inverse 1-centre location problem on the weighted interval graphs Online publication date: Wed, 03-Jan-2018
by Biswanath Jana; Sukumar Mondal; Madhumangal Pal
International Journal of Computing Science and Mathematics (IJCSM), Vol. 8, No. 6, 2017
Abstract: Let TIG be the tree corresponding to the weighted interval graph G = (V, E). In an inverse 1-centre location problem the parameter of an interval tree TIG corresponding to the weighted interval graph G = (V, E), like vertex weights have to be modified at minimum total cost such that a pre-specified vertex s ∈ V becomes the 1-centre of the interval graph G. In this paper, we present an O(n) time algorithm to find an inverse 1-centre location problem on the weighted tree TIG corresponding to the weighted interval graph, where the vertex weights can be changed within certain bounds and n is the number of vertices of the graph G.
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Computing Science and Mathematics (IJCSM):
Login with your Inderscience username and password:
Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.
If you still need assistance, please email subs@inderscience.com