A meta-heuristic learning approach for the non-intrusive detection of impersonation attacks in social networks
by Esther Villar-Rodriguez; Javier Del Ser; Sergio Gil-Lopez; Miren Nekane Bilbao; Sancho Salcedo-Sanz
International Journal of Bio-Inspired Computation (IJBIC), Vol. 10, No. 2, 2017

Abstract: Cyber attacks have recently gained momentum in the research community as a sharply concerning phenomenon further ignited by the proliferation of social networks, which unfold a variety of ways for cybercriminals to access compromised information of their users. This paper gravitates on impersonation attacks, whose motivation may go beyond economic interests of the attacker towards getting unauthorised access to information and contacts, as often occurs between teenagers and early users of social platforms. This manuscript proposes a meta-heuristically optimised learning model as the algorithmic core of a non-intrusive detection system that relies exclusively on connection time features to detect evidences of an impersonation attack. The proposed scheme hinges on the K-Means clustering approach applied to a set of time features specially tailored to characterise the usage of users, which are weighted prior to the clustering under detection performance maximisation criteria. The obtained results shed light on the potentiality of the proposed methodology for its practical application to real social networks.

Online publication date: Fri, 18-Aug-2017

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Bio-Inspired Computation (IJBIC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com