The challenge of structural control on the nanoscale: bottom-up self-assembly of nucleic acids in 3D
by Nadrian C. Seeman
International Journal of Nanotechnology (IJNT), Vol. 2, No. 4, 2005

Abstract: Control of the structure of matter has been a major challenge to humankind throughout its entire history. The finer the features that we are able to engineer, the greater is the level of control that we have. Here, we summarise progress made in the bottom-up control of structure that is based on the self assembly of nucleic acids. Nucleic acids are unique among molecular systems in that their intermolecular interactions can be programmed, from the perspectives of both affinity and of structure. Structural DNA nanotechnology has been based on directing the cohesion of branched DNA motifs by the same cohesive interactions used by genetic engineers. As a result, multiply-connected objects, periodic and aperiodic arrays and nanomechanical devices have been produced by these systems. Current experiments are directed at using nucleic acid systems to scaffold the spatial assembly of other species.

Online publication date: Fri, 11-Nov-2005

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Nanotechnology (IJNT):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com