Pavement distress detection and avoidance for intelligent vehicles
by Mauro Bellone; Giulio Reina
International Journal of Vehicle Autonomous Systems (IJVAS), Vol. 13, No. 2, 2016

Abstract: Pavement distresses and potholes represent road hazards that can cause accidents and damages to vehicles. The latter may vary from a simple flat tyre to serious failures of the suspension system, and in extreme cases to collisions with third-party vehicles and even endanger passengers' lives. The primary scientific aim of this study is to investigate the problem of road hazard detection for driving assistance purposes, towards the final goal of implementing such a technology on future intelligent vehicles. The proposed approach uses a depth sensor to generate an environment representation in terms of 3D point cloud that is then processed by a normal vector-based analysis and presented to the driver in the form of a traversability grid. Even small irregularities of the road surface can be successfully detected. This information can be used either to implement driver warning systems or to generate, using a cost-to-go planning method, optimal trajectories towards safe regions of the carriageway. The effectiveness of this approach is demonstrated on real road data acquired during an experimental campaign. Normal analysis and path generation are performed in post-analysis. This approach has been demonstrated to be promising and may help to drastically reduce fatal traffic casualties, as a high percentage of road accidents are related to pavement distress.

Online publication date: Fri, 02-Sep-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

 
Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Vehicle Autonomous Systems (IJVAS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?


Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com