A new non-parametric feature learning for supervised link prediction
by Ahmad Agha Kardan; Samira Ghareh Gozlou
International Journal of System Control and Information Processing (IJSCIP), Vol. 1, No. 4, 2015

Abstract: Link prediction is an important task for analysing relational data such as the friendship relation on a social networking website that also has applications in other domains like, information retrieval, bioinformatics and e-commerce. The problem of link prediction is to predict the existence or absence of edges between vertices of a network. In this paper, we present a novel non-parametric latent feature relational model based on distance dependent Indian buffet process (DDIBP), by which we can utilise the information of topological structure of the network such as shortest path and connectivity of the nodes and incorporate them into the proposed Bayesian Non-parametric latent feature model which can automatically infer the unknown latent feature dimension. We also develop an efficient MCMC algorithm to compute the posterior distribution of the hidden variables with a highly nonlinear link likelihood function. Experimental results on four real datasets demonstrate the superiority of the proposed method over other latent feature models for link prediction problem.

Online publication date: Tue, 12-Apr-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of System Control and Information Processing (IJSCIP):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com