Modelling high Re flow around a 2D cylindrical bluff body using the k-ω (SST) turbulence model
by Andrew Li Jian Pang; Martin Skote; Siow Yong Lim
Progress in Computational Fluid Dynamics, An International Journal (PCFD), Vol. 16, No. 1, 2016

Abstract: In this work, we analyse the ability for the k-ω (SST) model to accurately predict a high Reynolds number, Re, flow around a cylindrical bluff body, relative to other two-equation RANS models. We investigate the sensitivity of incorporating a curvature correction modification in the k-ω (SST) model to improve the limitation of the eddy-viscosity-based models of capturing system rotation and streamline curvature for a flow around a cylinder. Finally, the ability for this turbulence model to capture the surface roughness of the cylinder is evaluated. Based on this work, we conclude that the k-ω (SST) model is superior to other two-equation RANS models and is able to capture the effects of surface roughness. The curvature correction modification to the k-ω (SST) model further improves this model.

Online publication date: Tue, 19-Jan-2016

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the Progress in Computational Fluid Dynamics, An International Journal (PCFD):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email