Numerical modelling and simulation of orthogonal machining process using FE-code
by G.R. Boob; A.B. Deoghare; P.V. Walke; P.M. Padole
International Journal of Machining and Machinability of Materials (IJMMM), Vol. 17, No. 3/4, 2015

Abstract: A numerical model is developed using general purpose finite element code to simulate the orthogonal machining process. Also, computational procedure is proposed for modelling and simulation of metal cutting process. The model is applied to calculate induced residual stresses over surface and sub-surface layers of work-piece. Dynamic explicit time integration technique with Arbitrary Lagrangian Eulerian (ALE) boundary condition is used to simulate metal removal process. Material models have been created using Johnson-Cook flow stress and damage laws. Novelty of current work is that the real time metal cutting behaviour with smooth and continuous chip formation is modelled by modifying material flow stress and damage parameters. Also, it is stated that, accuracy of such simulations is greatly influenced by material models and mesh definition. Findings of this paper provide useful insight about understanding and improving of orthogonal metal cutting process. Model predictions are compared with experimental data of residual stresses under various cutting conditions for validation. The results of simulation are consistent with experimental observations.

Online publication date: Sun, 27-Sep-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Machining and Machinability of Materials (IJMMM):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email