Equations of state implementation for 1-D modelling of performance in ram accelerator thermally choked propulsion mode
by Pascal Bauer; Tarek Bengherbia; Carl Knowlen; Adam Bruckner; Yufeng Yao; Marc Giraud
International Journal of Engineering Systems Modelling and Simulation (IJESMS), Vol. 7, No. 2, 2015

Abstract: This paper presents advancement on one-dimensional (1-D) unsteady modelling of a ram accelerator (RAMAC) in the sub-detonative velocity regime by including real-gas equations of state (EoS) in order to account for the compressibility effects of the combustion products. Several equations of state based on generalised empirical and theoretical considerations are incorporated into a 1-D computer code TARAM. The objective of this work is to provide the best available formulations in order to improve the unsteady 1-D model and make the TARAM code a useful tool to predict the performance of the RAMAC in the sub-detonative velocity regime, without having to resort to more complicated 2-D or 3-D computational schemes. The calculations are validated against experimental data from 38-mm and 90-mm-bore facilities and good agreements have been achieved. Yet, the results demonstrate the need for further CFD studies involving the scale effect.

Online publication date: Wed, 08-Apr-2015

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Engineering Systems Modelling and Simulation (IJESMS):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email subs@inderscience.com