Classification of interior noise comfort level of Proton model cars using feedforward neural network
by M.P. Paulraj; Allan Melvin Andrew
International Journal of Artificial Intelligence and Soft Computing (IJAISC), Vol. 3, No. 4, 2013

Abstract: In this research, a Proton model cars noise comfort level classification system has been developed to detect the noise comfort level in cars using artificial neural network. This research focuses on developing a database consisting of car sound samples measured from different Proton make models in stationary and moving state. In the stationary condition, the sound pressure level is measured at 1,300 RPM, 2,000 RPM and 3,000 RPM while in moving condition, the sound is recorded using dB Orchestra while the car is moving at constant speed from 30 km/h up to 110 km/h. Subjective test is conducted to find the jury's evaluation for the specific sound sample. The feature set is then feed to the neural network model to classify the comfort level. The spectral power feature gives the highest classification accuracy of 88.42%.

Online publication date: Sat, 12-Jul-2014

The full text of this article is only available to individual subscribers or to users at subscribing institutions.

Existing subscribers:
Go to Inderscience Online Journals to access the Full Text of this article.

Pay per view:
If you are not a subscriber and you just want to read the full contents of this article, buy online access here.

Complimentary Subscribers, Editors or Members of the Editorial Board of the International Journal of Artificial Intelligence and Soft Computing (IJAISC):
Login with your Inderscience username and password:

    Username:        Password:         

Forgotten your password?

Want to subscribe?
A subscription gives you complete access to all articles in the current issue, as well as to all articles in the previous three years (where applicable). See our Orders page to subscribe.

If you still need assistance, please email